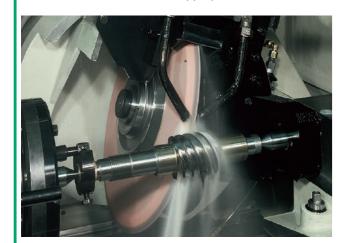


Custom-made worm gears are available.

KHK offers high-precision products.

Production Range

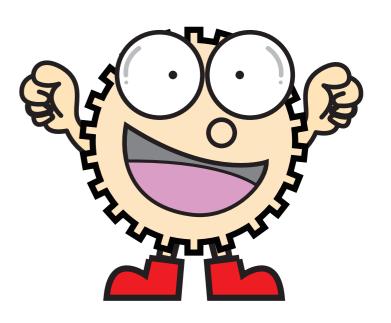
Module : 0.5~10


Worm outer diameter : ϕ 100 mm or less Wheel outer diameter : ϕ 600 mm or less Assembly distance : 350 mm or less

Please see Page 26 for more details about custom-made orders.

High-precision ground gear technology achieves high speed and quiet movement.

Excellent tooth contact and appropriate backlash are essential for worm gears. Give KHK's reliable stock worm gears a try.


Klingelnberg Worm Grinding Machine

Worm Gear Tooth Contact Machine

凸 Gearboxes

Catalog Number of KHK Stock Gears

The Catalog Number for KHK stock gears is based on the simple formula listed below. Please order KHK gears by specifying the Catalog Numbers.

(Example) Gearboxes

Spur Gear

Helical Gears

Internal Gears

acks & F

Miter Gears

Bevel Gears

Screw

orm

Gearboxes

Other

450

Racks

Bevel Gears

Screw

461

KBX-T

Items required for selection

Load torque, prime mover type, input rotation speed, speed ratio, operating time, connection method, frequency of start/stop

Selection Procedure

The performance table in the catalog is where the load is uniform, the prime mover is a motor and the operating time is

A) When using under other conditions, correct the load torque according to the Service Factors in <Table 1>.

Corrected load torque = Load torque applied to the gear box x Service factor <See Table 1>

Service Factor (Sf)

ice i actor (Si) \ \Tabi	J
	O	Т

Load State	Service Factor (Sf)		
Load State	Operation of 3H or less / day	Operation of 3~10H / day	Operation of 10H or more / day
Uniform load	1 (1)	1 (1.25)	1.25 (1.50)
Light impact load	1 (1.25)	1.25 (1.50)	1.50 (1.75)
Severe impact load	1.25 (1.50)	1.50 (1.75)	1.75 (2.00)

(Note) 1. If the frequency of start/stop is 10 times or more per hour, the coefficient in parentheses will be used.

2. For a prime mover other than electric motor is used (engine, etc.), the coefficient in parentheses will also be used.

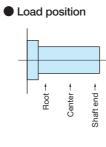
Make sure that the corrected load torque is smaller than the X/Y-axis allowable torque or the Y-axis allowable torque in the performance table at the operating rotation speed.

- B) For the shaft arrangement, select from the Shaft Arrangement Diagram of respective model.
- C) Confirming the overhang load (O.H.L.) Overhang load (O.H.L.) is a suspended load acting on the shaft. The O.H.L. must be considered if a chain, belt, gear or the like is used to connect the gear box shaft and mating machine.

O.H.L. =
$$\frac{T_{LE} \times K_1 \times K_2}{R}$$
 (N) {kgf}

 $T_{\text{LE}}\,$: Corrected load torque (N·m) {kgf·m} applied to the gear box shaft

R : Pitch circle radius (m) of a sprocket, pulley, gear or the like attached to the gear box shaft


K₁: Coefficient by connection method <See Table 2>

K2 : Coefficient by load position <See Table 3>

* Make sure that the O.H.L. calculated using the above formula is smaller than the allowable O.H.L. for the X-axis and Y-axis shown in the performance table.

Coefficient K ₁	<table 2=""></table>
Connection method	K ₁
Chain, timing belt	1.00
Gear	1.25
V-belt	1.50

Coefficient K ₂	<table 3=""></table>
Load position	K ₂
Shaft root	0.75
Shaft center	1.00
Shaft end	1.50

D) Select a model that satisfies all of A), B) and C) obtained using the above formula.

Selection Example

Selection example 1

Application / Conveyor (uniform load) Load torque / 78.4N·m {8kgf·m}

X-axis rotation speed / 300rpm

Speed ratio / 1:2

Shaft arrangement / As shown in the diagram on the right

Operating time / 12 hours/day

Connection method / X-axis - Coupling

Y-axis - Chain (located in the center of the shaft)

Installation method / Horizontal mounting

Installation location / Indoors

Considering the torque

The service factor based on the load status is Sf = 1.25 as shown in <Table 1>. Therefore, the corrected load torque applied to the Y-axis is:

 $T_{LE} = 78.4 \times 1.25 = 98 \text{N} \cdot \text{m}$ { $T_{LE} = 8 \times 1.25 = 10 \text{kgf} \cdot \text{m}$ }.

2 Considering the O.H.L.

The load O.H.L. of Y-axis is:

O.H.L. =
$$\frac{T_{LE} \times K_1 \times K_2}{R}$$
 = $\frac{98 \times 1 \times 1}{\frac{100}{2 \times 1000}}$ = 1960N { O.H.L. = $\frac{T_{LE} \times K_1 \times K_2}{R}$ = $\frac{10 \times 1 \times 1}{\frac{100}{2 \times 1000}}$ = 200kgf }

3 Determining the model

A model that satisfies all the conditions, torque and O.H.L. is CBX-322LB.

Selection example 2

Application / Line shaft drive

Load torque / Load A, B, and C are 58.8N·m {6kgf·m} respectively (uniform load)

Rotation speed / 600rpm

Speed ratio / 1:1

Shaft arrangement / As shown in the diagram on the right

Operating time / 8 hours/day

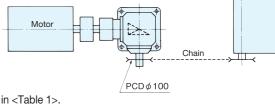
Connection method / All coupling

Installation method / Horizontal mounting

Installation location / Indoors

For line shaft drive, the load applied to the Y-axis differs depending on the position of the gear box, so it is necessary to select each separately. The Service Factors < Table 1> based on the conditions are all Sf = 1.0.

① Gearboxes No.1


The corrected load torque applied to the X-axis drives only load A. Therefore, $58.8 \times 1.0 = 58.8 \text{ N} \cdot \text{m} \{6 \times 1.0 = 6 \text{ kgf} \cdot \text{m}\}$ The corrected load torque applied to the Y-axis drives loads A, B and C. Therefore, $(58.8 + 58.8 + 58.8) \times 1.0 = 176.4 \text{ N} \cdot \text{m}$ $\{(6+6+6)\times 1.0 = 18\text{kgf·m}\}$ Based on the performance table, CBX-401TB is selected.

② Gearboxes No.2

The corrected load torque applied to the X-axis drives only load B. Therefore, $58.8 \times 1.0 = 58.8 \text{ N} \cdot \text{m} \{6 \times 1.0 = 6 \text{ kgf} \cdot \text{m}\}$ The corrected load torque applied to the Y-axis drives loads B and C. Therefore, $(58.8 + 58.8) \times 1.0 = 117.6$ N·m $\{(6+6) \times 1.0 = 12 \text{kgf·m}\}$

Based on the performance table, CBX-321TB is selected.

3 Gearboxes No.3

The corrected load torque applied to the X-axis drives only load C. Therefore, $58.8 \times 1.0 = 58.8 \text{ N} \cdot \text{m} \{6 \times 1.0 = 6 \text{ kgf} \cdot \text{m}\}$ The corrected load torque applied to the Y-axis drives only load C. Therefore, $58.8 \times 1.0 = 58.8 \text{ N} \cdot \text{m} \{6 \times 1.0 = 6 \text{ kgf} \cdot \text{m}\}$ Based on the performance table, CBX-251LB is selected.

4 Determining the model

No.1 Gear Box CBX-401TB No.2 Gear Box CBX-321TB

No.3 Gear Box CBX-251LB

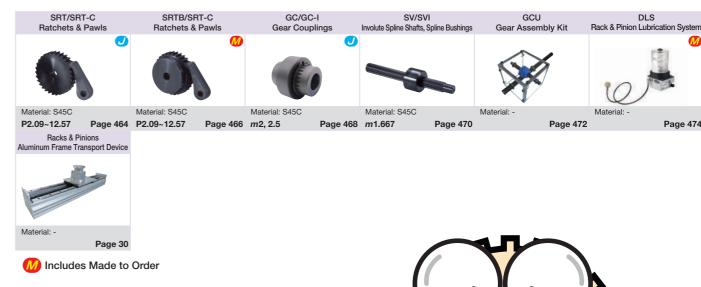
Load C

460

Miter CP Racks & Racks Gears Gears Gears

Moment of Inertia of KBX Bevel Box

Model Item Pinion Axis (X) G	ear Axis (Y)
	()
KBX-101L 4.45×10 ⁻⁶	4.45×10 ⁻⁶
KBX-102L 2.16×10 ⁻⁶	8.65×10 ⁻⁶
KBX-151L 5.30×10 ⁻⁵	5.30×10 ⁻⁵
	1.47×10 ⁻⁴
KBX-201L 1.79×10 ⁻⁴	1.79×10 ⁻⁴
KBX-202L 7.85×10 ⁻⁵	3.15×10 ⁻⁴
KBX-101T 4.75×10 ⁻⁶	4.75×10 ⁻⁶
KBX-102T 2.23×10 ⁻⁶	8.93×10 ⁻⁶
T KBX-151T 5.60×10 ⁻⁵	5.60×10 ⁻⁵
KBX-152T 3.37×10 ⁻⁵	1.50×10 ⁻⁴
KBX-201T 1.94×10 ⁻⁴	1.94×10 ⁻⁴
KBX-202T 8.20×10 ⁻⁵	3.28×10 ⁻⁴


[NOTES] Consider the indicated moment of inertia as reference


Moment of Inertia of CBX Bevel Box

			Unit: kg·m²
Model	Item	Pinion Axis (X)	Gear Axis (Y)
	CBX-191L	4.00×10 ⁻⁴	4.00×10 ⁻⁴
	CBX-192L	1.86×10 ⁻⁴	7.43×10 ⁻⁴
	CBX-251L	2.48×10 ⁻³	2.48×10 ⁻³
	CBX-252L	1.03×10 ⁻³	4.13×10 ⁻³
	CBX-321L	4.00×10 ⁻³	4.00×10 ⁻³
	CBX-322L	1.29×10 ⁻³	5.18×10 ⁻³
	CBX-401L	8.95×10 ⁻³	8.95×10 ⁻³
	CBX-402L	3.83×10 ⁻³	1.53×10 ⁻²
	CBX-191T	4.05×10 ⁻⁴	4.05×10 ⁻⁴
	CBX-192T	1.87×10 ⁻⁴	7.48×10 ⁻⁴
	CBX-251T	2.50×10 ⁻³	2.50×10 ⁻³
_	CBX-252T	1.04×10 ⁻³	4.15×10 ⁻³
Т	CBX-321T	4.08×10 ⁻³	4.08×10 ⁻³
	CBX-322T	1.31×10 ⁻³	5.25×10 ⁻³
	CBX-401T	9.20×10 ⁻³	9.20×10 ⁻³
	CBX-402T	3.88×10 ⁻³	1.55×10 ⁻²

[NOTES] Consider the indicated moment of inertia as reference

Other Products

Catalog Number of KHK Stock Gears

The Catalog Number for KHK stock gears is based on the simple formula listed below. Please order KHK gears by specifying the Catalog Numbers.

(Example) Other Products

